Общая характеристика реле
По области применения реле можно разделить на реле для схем автоматики, для управления и защиты электропривода и защиты энергосистем. По принципу действия реле делятся на электромагнитные, поляризованные, тепловые, индукционные, магнитоэлектрические, полупроводниковые и др.
В зависимости от входного параметра реле можно разделить на реле тока, напряжения, мощности, частоты и других величин. Отметим, что реле может реагировать не только на входной параметр, но и на разность значений (дифференциальное реле), изменение знака или скорости изменения входного параметра. Иногда реле, имеющее только один входной параметр, должно воздействовать на несколько независимых цепей. В этом случае реле воздействует на другое, так называемое промежуточное реле, которое имеет необходимое число управляемых цепей.
Промежуточное реле используется и тогда, когда мощность основного реле недостаточна для воздействия на управляемые цепи.
По принципу воздействия на управляемую цепь реле делятся на контактные и бесконтактные. Выходным параметром бесконтактных реле является резкое изменение сопротивления, включенного в управляемую цепь. Разомкнутому состоянию контактов контактного реле соответствует большое сопротивление управляемой цепи бесконтактного реле. Это состояние бесконтактного реле называется закрытым. Замкнутому состоянию контактов контактного реле соответствует малое сопротивление в управляемой цепи бесконтактного реле. Такое состояние бесконтактного реле называется открытым.
По способу включения реле разделяются на первичные и вторичные. Первичные реле включаются в управляемую цепь непосредственно, вторичные – через измерительные трансформаторы.
Основные характеристики реле. Рассмотрим характеристику управления реле, представляющую собой зависимость выходного параметра от входного параметра для реле с замыкающим контактом. У этих реле при отсутствии входного сигнала контакты разомкнуты, и ток в управляемой цепи равен нулю. Для бесконтактных реле сопротивление, введенное в управляемую цепь, достаточно велико, и ток имеет минимальное значение. На рис. 6.1 по оси абсцисс отложено значение входного параметра


Значение входного параметра









Происходит срабатывание реле. Если после срабатывания уменьшать значение входного параметра, то при




Значение входного параметра, при котором происходит скачкообразное отпускание реле, называется параметром отпускания. Значения параметров срабатывания или отпускания, на которые отрегулировано реле, называются уставкой по входному параметру.
Время с момента подачи команды на срабатывание до момента начала возрастания выходного параметра называется временем срабатывания. Это время зависит от конструкции реле, схемы его включения и входного параметра. Чем больше значение входного параметра




Для ряда реле очень важно отношение


Время с момента подачи команды на отключение до достижения минимального значения выходного параметра называется временем отключения. Для контактных реле это время состоит из двух интервалов — времени отпускания и времени горения дуги.
На рис.6.2 даны зависимости входного


Для рис. 6.2 принято, что включение обмотки реле происходит при









После размыкания контактов загорается дуга, которая погаснет через время



Важным параметром, характеризующим усилительные свойства реле, является отношение максимальной мощности нагрузки в управляемой цепи


Для контактных реле максимальная мощность

Требования, предъявляемые к реле. Требования к реле в значительной мере определяются их назначением. К реле защиты энергосистем предъявляются требования селективности, быстродействия, чувствительности и надежности.
Под селективностью понимается способность реле отключать только поврежденный участок энергосистемы. Достаточно высокое быстродействие позволяет резко снизить последствия аварии, сохранить устойчивость системы при аварийных режимах, обеспечить высокое качество электроэнергии. Минимальное значение входного параметра, при котором реле срабатывает, называется чувствительностью.
Увеличение чувствительности позволяет улучшить качество электротехнических устройств. Так, например, повышение чувствительности релейной защиты позволяет сократить длину линии электропередачи, которая не может быть защищена от аварийных режимов.
Реле для защиты энергосистем должны иметь высокую надежность. В противном случае возможно развитие тяжелых аварий и недоотпуск большого количества электроэнергии.
Реле защиты энергосистемы эксплуатируются, как правило, в облегченных условиях. Они не подвержены воздействию ударов, вибрации, а также пыли и газов, вызывающих коррозию. Из-за того, что аварийные режимы в системе редки, к этим реле не предъявляются высокие требования в части износостойкости.
К реле для схем автоматики, а также для управления и защиты электропривода предъявляются самые разнообразные специфические требования. Эти реле работают в тяжелых условиях эксплуатации: возможны удары, вибрация воздух часто засорен пылью или агрессивными производственными примесями. Так как число включений в час в современных схемах электропривода достигает 1000 – 1200 и более, реле управления должны иметь механическую и электрическую износостойкость до (1-10)·106 циклов. Надежность работы схем автоматики зависит от надежности работы отдельных элементов, в том числе и реле.
Из-за большого количества реле в современных схемах и большого количества выполняемых ими операций к ним предъявляются требования высокой надежности.
Источник:http://electrono.ru
0 коммент.:
Отправить комментарий
Примечание. Отправлять комментарии могут только участники этого блога.